Literatur zu Bernd Meyer: Die E-Zigarette, Fakten & Mythen. 

(Hier gehts zurück zur Buchbeschreibung)

Die Zahlen beziehen sich auf die Anmerkungen im Buch. Die meisten Links zu Fachzeitschriften führen zur jeweiligen Zusammenfassung (Abstract) in PubMed, wo zumeist weiterführende Links zu den jeweiligen Volltexten bereitstehen. Allerdings sind viele Artikel hinter einer Paywall und nicht kostenfrei im Volltext einzusehen.

  1. Stöver, H. (Hrsg.) Ratgeber E-Zigarette: Einsteigen, Umsteigen, Aussteigen, Fachhochschulverlag Frankfurt a.M., Frankfurt (2019)
  2. Hill, A. B. The environment and disease: Association or causation? Proc. R. Soc. Med. 58, 295-300 (1965) DOI: PMC1898525;
  3. Riahi, F., Rajkumar, S. & Yach, D. Tobacco smoking and nicotine delivery alternatives: Patterns of product use and perceptions in 13 countries. F1000Research 8, 17635 (2019) DOI: 10.12688/f1000research17635.2;
  4. Kotz, D., Batra, A. & Kastaun, S. Rauchstoppversuche und genutzte Entwöhnungsmethoden. Eine deutschlandweite repräsentative Befragung anhand sozioökonomischer Merkmale in 19 Wellen von 2016–2019 (DEBRA-Studie). Dtsch. Arztebl. Int. 117, 7-13 (2020) DOI: 10.3238/arztebl.2020.0007;
  5. Hsu, G. & Grodal, S. The double-edged sword of oppositional category positioning: A study of the U.S. e-cigarette category, 2007–2017. Administrative Science Quarterly (2020) DOI: 10.1177/0001839220914855;
  6. Russell, M. A. Low-tar medium-nicotine cigarettes: a new approach to safer smoking. BMJ 1, 1430-1433 (1976) DOI: 10.1136/bmj.1.6023.1430;
  7. Siegmund, B., Leitner, E. & Pfannhauser, W. Determination of the nicotine content of various edible nightshades (Solanaceae) and their products and estimation of the associated dietary nicotine intake. J. Agric. Food Chem. 47, 3113-3120 (1999) DOI: 10.1021/jf990089w;
  8. Mills, E. J., Thorlund, K., Eapen, S., Wu, P. & Prochaska, J. J. Cardiovascular events associated with smoking cessation pharmacotherapies: A network meta-analysis. Circulation 129, 28-41 (2014) DOI: 10.1161/CIRCULATIONAHA.113.003961;
  9. Benowitz, N. L., Pipe, A., West, R., Hays, J. T., Tonstad, S., McRae, T., Lawrence, D., St Aubin, L. & Anthenelli, R. M. Cardiovascular safety of varenicline, bupropion, and nicotine patch in smokers: A randomized clinical trial. JAMA Intern. Med. 178, 622-631 (2018) DOI: 10.1001/jamainternmed.2018.0397;
  10. Singh, S., Pillai, S. & Chellappan, S. Nicotinic acetylcholine receptor signaling in tumor growth and metastasis. J. Oncol., 456743 (2011) DOI: 10.1155/2011/456743;
  11. Heeschen, C., Jang, J. J., Weis, M., Pathak, A., Kaji, S., Hu, R. S., Tsao, P. S., Johnson, F. L. & Cooke, J. P. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat. Med. 7, 833-839 (2001) DOI: 10.1038/89961;
  12. Davis, R., Rizwani, W., Banerjee, S., Kovacs, M., Haura, E., Coppola, D. & Chellappan, S. Nicotine promotes tumor growth and metastasis in mouse models of lung cancer. PLoS ONE 4, e7524 (2009) DOI: 10.1371/journal.pone.0007524;
  13. Li, T., Zhang, J., Zhang, J., Zhang, N., Zeng, Y., Tang, S., Tao, Z., Qu, X., Jia, J., Zhu, W., Sun, X. & Chen, H. Nicotine-enhanced stemness and epithelial-mesenchymal transition of human umbilical cord mesenchymal stem cells promote tumor formation and growth in nude mice. Oncotarget 9, 591-606 (2018) DOI: 10.18632/oncotarget.22712;
  14. Pullan, R. D., Rhodes, J., Ganesh, S., Mani, V., Morris, J. S., Williams, G. T., Newcombe, R. G., Russell, M. A. H., Feyerabend, C., Thomas, G. A. O. & Sawe, U. Transdermal nicotine for active ulcerative colitis. N. Engl. J. Med. 330. 811-815 (1994) DOI: 10.1056/nejm199403243301202;
  15. Cohen, R. D. Nicotine in ulcerative colitis – how does it work and how can we use it? Cin. Immunother. 5, 169-174 (1996) DOI: 10.1007/BF03259080;
  16. Gomes, J. P., Watad, A. & Shoenfeld, Y. Nicotine and autoimmunity: The lotus’ flower in tobacco. Pharmacol. Res. 128, 101-109 (2018) DOI: 10.1016/j.phrs.2017.10.005;
  17. Julian, M. W., Shao, G., Schlesinger, L. S., Huang, Q., Cosmar, D. G., Bhatt, N. Y., Culver, D. A., Baughman, R. P., Wood, K. L. & Crouser, E. D. Nicotine treatment improves toll-like receptor 2 and toll-like receptor 9 responsiveness in active pulmonary sarcoidosis. Chest 143, 461-470 (2013) DOI: 10.1378/chest.12-0383;
  18. Quik, M., Zhang, D. H., McGregor, M. & Bordia, T. Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochem. Pharmacol. 97, 399-407 (2015) DOI: 10.1016/j.bcp.2015.06.014;
  19. Ma, C., Liu, Y., Neumann, S. & Gao, X. Nicotine from cigarette smoking and diet and Parkinson disease: A review. Transl. Neurodegener. 6, 18 (2017) DOI: 10.1186/s40035-017-0090-8;
  20. Newhouse, P. A., Potter, A., Kelton, M. & Corwin, J. Nicotinic treatment of Alzheimer’s disease. Biol. Psychiatry 49, 268-278 (2001) DOI: 10.1016/S0006-3223(00)01069-6;
  21. Lombardo, S. & Maskos, U. Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology 96, 255-262 (2015) DOI: 10.1016/j.neuropharm.2014.11.018;
  22. Rusted, J. M., Sawyer, R., Jones, C., Trawley, S. L. & Marchant, N. L. Positive effects of nicotine on cognition: The deployment of attention for prospective memory. Psychopharmacology 202, 93-102 (2009) DOI: 10.1007/s00213-008-1320-7;
  23. Jasinska, A. J., Zorick, T., Brody, A. L. & Stein, E. A. Dual role of nicotine in addiction and cognition: A review of neuroimaging studies in humans. Neuropharmacology 84, 111-122 (2014) DOI: 10.1016/j.neuropharm.2013.02.015;
  24. Wesnes, K. A., Edgar, C. J., Kezic, I., Salih, H. M. & De Boer, P. Effects of nicotine withdrawal on cognition in a clinical trial setting. Psychopharmacology 229, 133-140 (2013) DOI: 10.1007/s00213-013-3089-6;
  25. Newhouse, P. A., Potter, A. & Singh, A. Effects of nicotinic stimulation on cognitive performance. Curr. Opin. Pharmacol. 4, 36-46 (2004) DOI: 10.1016/j.coph.2003.11.001;
  26. Newhouse, P., Kellar, K., Aisen, P., White, H., Wesnes, K., Coderre, E., Pfaff, A., Wilkins, H., Howard, D. & Levin, E. D. Nicotine treatment of mild cognitive impairment: A 6-month double-blind pilot clinical trial. Neurology 78, 91-101 (2012) DOI: 10.1212/WNL.0b013e31823efcbb;
  27. Laikowski, M. M., Reisdorfer, F. & Moura, S. NAChR α4β2 subtype and their relation with nicotine addiction, cognition, depression and hyperactivity disorder. Curr. Med. Chem. 26, 3792-3811 (2019) DOI: 10.2174/0929867325666180410105135;
  28. Vermeulen, J. M., Schirmbeck, F., Blankers, M., et al. Association between smoking behavior and cognitive functioning in patients with psychosis, siblings, and healthy control subjects: Results from a prospective 6-year follow-up study. Am. J. Psychiatry 175, 1121-1128 (2018) DOI: 10.1176/appi.ajp.2018.18010069;
  29. Gogos, A., Skokou, M., Ferentinou, E. & Gourzis, P. Nicotine consumption during the prodromal phase of schizophrenia – a review of the literature. Neuropsychiatr. Dis. Treat. 15, 2943-2958 (2019) DOI: 10.2147/NDT.S210199;
  30. Guimarães, K., Madureira, D. Q. M. & Madureira, A. L. The reward-attention circuit model: Nicotine’s influence on attentional focus and consequences on attention deficit hyperactivity disorder. Neurocomputing 242, 140-149 (2017) DOI: 10.1016/j.neucom.2017.02.072;
  31. Boggs, D. L., Surti, T. S., Esterlis, I., Pittman, B., Cosgrove, K., Sewell, R. A., Ranganathan, M. & D’Souza, D. C. Minimal effects of prolonged smoking abstinence or resumption on cognitive performance challenge the „self-medication” hypothesis in schizophrenia. Schizophr. Res. 194, 62-69 (2018) DOI: 10.1016/j.schres.2017.03.047;
  32. Kollins, S. H., Sweitzer, M. M., McClernon, F. J. & Perkins, K. A. Increased subjective and reinforcing effects of initial nicotine exposure in young adults with attention deficit hyperactivity disorder (ADHD) compared to matched peers: results from an experimental model of first-time tobacco use. Neuropsychopharmacology 45, 851-856 (2020) DOI: 10.1038/s41386-019-0581-7;
  33. Marquardt, H. & Schäfer, S. Lehrbuch der Toxikologie, Wissenschatliche Verlagsgesellschaft mbH, Stuttgart (2004)
  34. Dawkins, L. E., Kimber, C. F., Doig, M., Feyerabend, C. & Corcoran, O. Self-titration by experienced e-cigarette users: blood nicotine delivery and subjective effects. Psychopharmacology (Berl) 233, 2933-2941 (2016) DOI: 10.1007/s00213-016-4338-2;
  35. Norbert Zillatron. EU ENVI „expert“ hearing 2013-02-25. (2013)
  36. Hukkanen, J., Jacob III, P. & Benowitz, N. L. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 57, 79-115 (2005)
  37. Nair, M. K., Chetty, D. J., Ho, H. & Chien, Y. W. Biomembrane permeation of nicotine: Mechanistic studies with porcine mucosae and skin. J. Pharm. Sci. 86, 257-262 (1997) DOI: 10.1021/js960095w;
  38. Zorin, S., Kuylenstierna, F. & Thulin, H. In vitro test of nicotine’s permeability through human skin. Risk evaluation and safety aspects. Ann. Occup. Hyg. 43, 405-413 (1999)
  39. Rose, J. E., Mukhin, A. G., Lokitz, S. J., Turkington, T. G., Herskovic, J., Behm, F. M., Garg, S. & Garg, P. K. Kinetics of brain nicotine accumulation in dependent and nondependent smokers assessed with PET and cigarettes containing 11C-nicotine. Proc. Natl. Acad. Sci. U.S.A. 107, 5190-5195 (2010)
  40. Dawkins, L. & Corcoran, O. Acute electronic cigarette use: Nicotine delivery and subjective effects in regular users. Psychopharmacology 231, 401-407 (2014) DOI: 10.1007/s00213-013-3249-8;
  41. Yan, X. S. & D’Ruiz, C. Effects of using electronic cigarettes on nicotine delivery and cardiovascular function in comparison with regular cigarettes. Regul. Toxicol. Pharmacol. 71, 24-34 (2015) DOI: 10.1016/j.yrtph.2014.11.004;
  42. Hiler, M., Karaoghlanian, N., Talih, S., Maloney, S., Breland, A., Shihadeh, A. & Eissenberg, T. Effects of electronic cigarette heating coil resistance and liquid nicotine concentration on user nicotine delivery, heart rate, subjective effects, puff topography, and liquid consumption. Exp. Clin. Psychopharmacol. (2019) DOI: 10.1037/pha0000337;
  43. St.Helen, G., Dempsey, D. A., Havel, C. M., Jacob, P., III & Benowitz, N. L. Impact of e-liquid flavors on nicotine intake and pharmacology of e-cigarettes. Drug Alcohol Depend. 178, 391-398 (2017) DOI: 10.1016/j.drugalcdep.2017.05.042;
  44. Kobert, R. Lehrbuch der Intoxikationen. Band II: Spezieller Teil, Verlag von Ferdinand Enke, Stuttgart (1906)
  45. Schroff, C. D. Pharmacologie, Wilhelm Braumüller, Wien (1856)
  46. Mayer, B. How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch. Toxicol. 88, 5-7 (2014)
  47. Centers for Disease Control and Prevention (CDC). The National Institute for Occupational Safety and Health (NIOSH) – Nicotine.
  48. Fagerström, K. O. & Schneider, N. G. Measuring nicotine dependence: A review of the Fagerstrom Tolerance Questionnaire. J. Behav. Med. 12, 159-182 (1989) DOI: 10.1007/BF00846549;
  49. Etter, J. F., Vu Duc, T. & Perneger, T. V. Validity of the Fagerström test for nicotine dependence and of the heaviness of smoking index among relatively light smokers. Addiction 94, 269-281 (1999) DOI: 10.1046/j.1360-0443.1999.94226910.x;
  50. Volkow, N. D., Fowler, J. S., Wang, G. J., Swanson, J. M. & Telang, F. Dopamine in drug abuse and addiction: Results of imaging studies and treatment implications. Arch. Neurol. 64, 1575-1579 (2007) DOI: 10.1001/archneur.64.11.1575;
  51. Moore, D., Aveyard, P., Connock, M., Wang, D., Fry-Smith, A. & Barton, P. Effectiveness and safety of nicotine replacement therapy assisted reduction to stop smoking: Systematic review and meta-analysis. BMJ Open 338, 867-870 (2009) DOI: 10.1136/bmj.b1024;
  52. Stanley, T. D. & Massey, S. Evidence of nicotine replacement’s effectiveness dissolves when meta-regression accommodates multiple sources of bias. J. Clin. Epidemiol. 79, 41-45 (2016) DOI: 10.1016/j.jclinepi.2016.03.024;
  53. Solingapuram Sai, K. K., Zuo, Y., Rose, J. E. y. z., Garg, P. K., Garg, S., Nazih, R., Mintz, A. & Mukhin, A. G. Rapid brain nicotine uptake from electronic cigarettes. J. Nucl. Med. (2019) DOI: 10.2967/jnumed.119.230748;
  54. Fowler, C. D., Gipson, C. D., Kleykamp, B. A., et al. Basic science and public policy: Informed regulation for nicotine and tobacco products. Nicotine Tob. Res. 20. 789-799 (2018) DOI: 10.1093/ntr/ntx175;
  55. Guillem, K., Vouillac, C., Azar, M. R., Parsons, L. H., Koob, G. F., Cador, M. & Stinus, L. Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J. Neurosci. 25, 8593-8600 (2005) DOI: 10.1523/JNEUROSCI.2139-05.2005;
  56. Costello, M. R., Reynaga, D. D., Mojica, C. Y., Zaveri, N. T., Belluzzi, J. D. & Leslie, F. M. Comparison of the reinforcing properties of nicotine and cigarette smoke extract in rats. Neuropsychopharmacology 39, 1843-1851 (2014) DOI: 10.1038/npp.2014.31;
  57. Smith, T. T., Schaff, M. B., Rupprecht, L. E., Schassburger, R. L., Buffalari, D. M., Murphy, S. E., Sved, A. F. & Donny, E. C. Effects of MAO inhibition and a combination of minor alkaloids, β-carbolines, and acetaldehyde on nicotine self-administration in adult male rats. Drug Alcohol Depend. 155, 243-252 (2015) DOI: 10.1016/j.drugalcdep.2015.07.002;
  58. Fowler, J. S., Logan, J., Wang, G. J. & Volkow, N. D. Monoamine oxidase and cigarette smoking. Neurotoxicology 24, 75-82 (2003) DOI: 10.1016/S0161-813X(02)00109-2;
  59. Belluzzi, J. D., Wang, R. & Leslie, F. M. Acetaldehyde enhances acquisition of nicotine self-administration in adolescent rats. Neuropsychopharmacology 30. 705-712 (2005) DOI: 10.1038/sj.npp.1300586;
  60. Guillem, K., Vouillac, C., Azar, M. R., Parsons, L. H., Koob, G. F., Cador, M. & Stinus, L. Monoamine oxidase A rather than monoamine oxidase B inhibition increases nicotine reinforcement in rats. Eur. J. Neurosci. 24, 3532-3540 (2006) DOI: 10.1111/j.1460-9568.2006.05217.x;
  61. Clemens, K. J., Caillé, S., Stinus, L. & Cador, M. The addition of five minor tobacco alkaloids increases nicotine-induced hyperactivity, sensitization and intravenous self-administration in rats. Int. J. Neuropsychopharmacol. 12, 1355-1366 (2009) DOI: 10.1017/S1461145709000273;
  62. Hogg, R. C. Contribution of monoamine oxidase inhibition to tobacco dependence: A review of the evidence. Nicotine Tob. Res. 18, 509-523 (2016) DOI: 10.1093/ntr/ntv245;
  63. Berlin, I., Said, S., Spreux-Varoquaux, O., Olivares, R., Launay, J. M. & Puech, A. J. Monoamine oxidase A and B activities in heavy smokers. Biol. Psychiatry 38, 756-761 (1995) DOI: 10.1016/0006-3223(95)00084-4;
  64. Rose, J. E., Behm, F. M., Ramsey, C. & Ritchie, J. C. Platelet monoamine oxidase, smoking cessation, and tobacco withdrawal symptoms. Nicotine Tob. Res. 3, 383-390 (2001) DOI: 10.1080/14622200110087277;
  65. Fowler, J. S., Logan, J., Wang, G. J., et al. Comparison of monoamine oxidase A in peripheral organs in nonsmokers and smokers. J. Nucl. Med. 46, 1414-1420 (2005)
  66. Shahab, L., Gilchrist, G., Hagger-Johnson, G., Shankar, A., West, E. & West, R. Reciprocal associations between smoking cessation and depression in older smokers: Findings from the English Longitudinal Study of Ageing. Br. J. Psychiatry 207, 243-249 (2015) DOI: 10.1192/bjp.bp.114.153494;
  67. Zvolensky, M. J., Bakhshaie, J., Sheffer, C., Perez, A. & Goodwin, R. D. Major depressive disorder and smoking relapse among adults in the United States: A 10-year, prospective investigation. Psychiatry Res. 226, 73-77 (2015) DOI: 10.1016/j.psychres.2014.11.064;
  68. Patten, S. B., Williams, J. V. A., Lavorato, D. H., Wang, J. L., Sajobi, T. T. & Bulloch, A. G. M. Major depression and non-specific distress following smoking cessation in the Canadian general population. J. Affect. Disord. 218, 182-187 (2017) DOI: 10.1016/j.jad.2017.04.056;
  69. Stepankova, L., Kralikova, E., Zvolska, K., Pankova, A., Ovesna, P., Blaha, M. & Brose, L. S. Depression and smoking cessation: Evidence from a smoking cessation clinic with 1-Year follow-up. Ann. Behav. Med. 51, 454-463 (2017) DOI: 10.1007/s12160-016-9869-6;
  70. Shoaib, M. & Buhidma, Y. Why are antidepressant drugs effective smoking cessation aids? Curr. Neuropharmacol. 16, 426-437 (2018) DOI: 10.2174/1570159X15666170915142122;
  71. Berlin, I., Saïd, S., Spreux-Varoquaux, O., Launay, J. M., Olivares, R., Millet, V., Lecrubier, Y. & Puech, A. J. A reversible monoamine oxidase A inhibitor (moclobemide) facilitates smoking cessation and abstinence in heavy, dependent smokers. Clin. Pharmacol. Ther. 58, 444-452 (1995) DOI: 10.1016/0009-9236(95)90058-6;
  72. Berlin, I., Hunneyball, I. M., Greiling, D., Jones, S. P., Fuder, H. & Stahl, H. D. A selective reversible monoamine oxidase B inhibitor in smoking cessation: Effects on its own and in association with transdermal nicotine patch. Psychopharmacology 223, 89-98 (2012) DOI: 10.1007/s00213-012-2692-2;
  73. Siu, E. C. K. & Tyndale, R. F. Non-nicotinic therapies for smoking cessation. Annu. Rev. Pharmacol. Toxicol. 47, 541-564 (2007) DOI: 10.1146/annurev.pharmtox.47.120505.105354;
  74. Fagerström, K. Determinants of tobacco use and renaming the FTND to the Fagerström test for cigarette dependence. Nicotine Tob. Res. 14, 75-78 (2012) DOI: 10.1093/ntr/ntr137;
  75. Frenk, H. & Dar, R. If the data contradict the theory, throw out the data: Nicotine addiction in the 2010 report of the Surgeon General. Harm Reduct. J. 8, 1477-7517-1478-1412 (2011) DOI: 10.1186/1477-7517-8-12;
  76. Etter, J. F. & Eissenberg, T. Dependence levels in users of electronic cigarettes, nicotine gums and tobacco cigarettes. Drug Alcohol Depend. 147, 68-75 (2015) DOI: 10.1016/j.drugalcdep.2014.12.007;
  77. Liu, G., Wasserman, E., Kong, L. & Foulds, J. A comparison of nicotine dependence among exclusive e-cigarette and cigarette users in the PATH study. Prev. Med. 104, 86-91 (2017) DOI: 10.1016/j.ypmed.2017.04.001;
  78. Jankowski, M., Krzystanek, M., Zejda, J. E., Majek, P., Lubanski, J., Lawson, J. A. & Brozek, G. E-cigarettes are more addictive than traditional cigarettes—A study in highly educated young people. Int. J. Environ. Res. Public Health 16(2019) DOI: 10.3390/ijerph16132279;
  79. Du, P., Fan, T., Yingst, J., Veldheer, S., Hrabovsky, S., Chen, C. & Foulds, J. Changes in e-cigarette use behaviors and dependence in long-term e-cigarette users. Am. J. Prev. Med. 57, 374-383 (2019) DOI: 10.1016/j.amepre.2019.04.021;
  80. Etter, J. F. A longitudinal study of cotinine in long-term daily users of e-cigarettes. Drug Alcohol Depend. 160. 218-221 (2016) DOI: 10.1016/j.drugalcdep.2016.01.003;
  81. Small, E., Shah, H. P., Davenport, J. J., Geier, J. E., Yavarovich, K. R., Yamada, H., Sabarinath, S. N., Derendorf, H., Pauly, J. R., Gold, M. S. & Bruijnzeel, A. W. Tobacco smoke exposure induces nicotine dependence in rats. Psychopharmacology 208, 143-158 (2010) DOI: 10.1007/s00213-009-1716-z;
  82. Bruijnzeel, A. W., Rodrick, G., Singh, R. P., Derendorf, H. & Bauzo, R. M. Repeated pre-exposure to tobacco smoke potentiates subsequent locomotor responses to nicotine and tobacco smoke but not amphetamine in adult rats. Pharmacol. Biochem. Behav. 100. 109-118 (2011) DOI: 10.1016/j.pbb.2011.08.005;
  83. Csabai, D., Cseko, K., Szaiff, L., Varga, Z., Miseta, A., Helyes, Z. & Czéh, B. Low intensity, long term exposure to tobacco smoke inhibits hippocampal neurogenesis in adult mice. Behav. Brain Res. 302, 44-52 (2016) DOI: 10.1016/j.bbr.2016.01.022;
  84. Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377-381 (2018) DOI: 10.1038/nature25975;
  85. Moreno-Jiménez, E. P., Flor-García, M., Terreros-Roncal, J., Rábano, A., Cafini, F., Pallas-Bazarra, N., Ávila, J. & Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 25, 554-560 (2019) DOI: 10.1038/s41591-019-0375-9;
  86. Lee, L. Y., Burki, N. K., Gerhardstein, D. C., Gu, Q., Kou, Y. R. & Xu, J. Airway irritation and cough evoked by inhaled cigarette smoke: Role of neuronal nicotinic acetylcholine receptors. Pulm. Pharmacol. Ther. 20. 355-364 (2007)
  87. Naqvi, N. H. & Bechara, A. The airway sensory impact of nicotine contributes to the conditioned reinforcing effects of individual puffs from cigarettes. Pharmacol. Biochem. Behav. 81, 821-829 (2005) DOI: 10.1016/j.pbb.2005.06.005;
  88. Etter, J. F. Throat hit in users of the electronic cigarette: An exploratory study. Psychol. Addict. Behav. 30. 93-100 (2016) DOI: 10.1037/adb0000137;
  90. Cisternino, S., Chapy, H., André, P., Smirnova, M., Debray, M. & Scherrmann, J. M. Coexistence of passive and proton antiporter-mediated processes in nicotine transport at the mouse blood-brain barrier. AAPS J. 15, 299-307 (2013) DOI: 10.1208/s12248-012-9434-6;
  91. Tega, Y., Yuzurihara, C., Kubo, Y., Akanuma, S. I., Ehrhardt, C. & Hosoya, K. I. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells. Drug Metab. Pharmacokinet. 31, 99-101 (2016) DOI: 10.1016/j.dmpk.2015.11.006;
  92. Seeman, J. I. Possible role of ammonia on the deposition, retention, and absorption of nicotine in humans while smoking. Chem. Res. Toxicol. 20. 326-343 (2007) DOI: 10.1021/tx600290v;
  93. David, G., Parmentier, E. A., Taurino, I. & Signorell, R. Tracing the composition of single e-cigarette aerosol droplets in situ by laser-trapping and Raman scattering. Sci. Rep. 10. 7929 (2020) DOI: 10.1038/s41598-020-64886-5;
  94. O’Connell, G., Pritchard, J. D., Prue, C., Thompson, J., Verron, T., Graff, D. & Walele, T. A randomised, open-label, cross-over clinical study to evaluate the pharmacokinetic profiles of cigarettes and e-cigarettes with nicotine salt formulations in US adult smokers. Intern. Emerg. Med. 14, 853-861 (2019) DOI: 10.1007/s11739-019-02025-3;
  95. Morshed, K. M., Nagpaul, J. P., Majumdar, S. & Amma, M. K. Kinetics of propylene glycol elimination and metabolism in rat. Biochem. Med. Metab. Biol. 39, 90-97 (1988) DOI: 10.1016/0885-4505(88)90062-x;
  96. Renne, R. A., Wehner, A. P., Greenspan, B. J., Deford, H. S., Ragan, H. A., Westerberg, R. B., Buschbom, R. L., Burger, G. T., Hayes, A. W., Suber, R. L. & Mosberg, A. T. 2-week and 13-week inhalation studies of aerosolized glycerol in rats. Inhal. Toxicol. 4, 95-111 (1992) DOI: 10.3109/08958379209145307;
  97. Werley, M. S., Kirkpatrick, D. J., Oldham, M. J., Jerome, A. M., Langston, T. B., Lilly, P. D., Smith, D. C. & McKinney, W. J. Toxicological assessment of a prototype e-cigaret device and three flavor formulations: A 90-day inhalation study in rats. Inhal. Toxicol. 28, 22-38 (2016) DOI: 10.3109/08958378.2015.1130758;
  98. Phillips, B., Titz, B., Kogel, U., et al. Toxicity of the main electronic cigarette components, propylene glycol, glycerin, and nicotine, in Sprague-Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints. Food Chem. Toxicol. 109, 315-332 (2017) DOI: 10.1016/j.fct.2017.09.001;
  99. Vardavas, C. I., Anagnostopoulos, N., Kougias, M., Evangelopoulou, V., Connolly, G. N. & Behrakis, P. K. Short-term pulmonary effects of using an electronic cigarette: Impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest 141, 1400-1406 (2012) DOI: 10.1378/chest.11-2443;
  100. European Chemical Agency (ECHA). Committees for Risk Assessment (RAC) and Socio-economic Analysis (SEAC) adopted 19 final opinions for recommending authorisation. (2016)
  101. Robertson, O. H., Loosli, C. G., Puck, T. T., Bigg, E. & Miller, B. F. The protection of mice against infection with air-borne influenza virus by means of propylene glycol vapor. Science 94, 612-613 (1941) DOI: 10.1126/science.94.2452.612;
  102. Robertson, O. H., Bigg, E., Puck, T. T. & Miller, B. F. The bacericidal action of propylene glycol vapor on microorganims suspended in air. I. J. Exp. Med. 75, 593-610 (1942) DOI: 10.1084/jem.75.6.593;
  103. Miler, J. A., Mayer, B. & Hajek, P. Changes in the Frequency of Airway Infections in Smokers Who Switched To Vaping: Results of an Online Survey. J. Addict. Res. Ther. 7(2016) DOI: 10.4172/2155-6105.1000290;
  104. Fowles, J. & Dybing, E. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob. Control 12, 424-430 (2003) DOI: 10.1136/tc.12.4.424;
  105. De Flora, S., Izzotti, A., D’Agostini, F., Bennicelli, C., You, M., Lubet, R. A. & Balansky, R. M. Induction and modulation of lung tumors: Genomic and transcriptional alterations in cigarette smoke-exposed mice. Exp. Lung Res. 31, 19-35 (2005) DOI: 10.1080/01902140490494986;
  106. Beauval, N., Verriele, M., Garat, A., Fronval, I., Dusautoir, R., Antherieu, S., Garcon, G., Lo-Guidice, J. M., Allorge, D. & Locoge, N. Influence of puffing conditions on the carbonyl composition of e-cigarette aerosols. Int. J. Hyg. Environ. Health 222, 136-146 (2019) DOI: 10.1016/j.ijheh.2018.08.015;
  107. Wang, P., Chen, W., Liao, J., Matsuo, T., Ito, K., Fowles, J., Shusterman, D., Mendell, M. & Kumagai, K. A device-independent evaluation of carbonyl emissions from heated electronic cigarette solvents. PLoS ONE 12, e0169811 (2017) DOI: 10.1371/journal.pone.0169811;
  108. Farsalinos, K. E., Voudris, V. & Poulas, K. E-cigarettes generate high levels of aldehydes only in ‘dry puff’ conditions. Addiction 110, 1352-1356 (2015) DOI: 10.1111/add.12942;
  109. Duell, A. K., McWhirter, K. J., Korzun, T., Strongin, R. M. & Peyton, D. H. Sucralose-enhanced degradation of electronic cigarette liquids during vaping. Chem. Res. Toxicol. 32, 1241-1249 (2019) DOI: 10.1021/acs.chemrestox.9b00047;
  110. Farsalinos, K. E. & Voudris, V. Do flavouring compounds contribute to aldehyde emissions in e-cigarettes? Food Chem. Toxicol. 115, 212-217 (2018) DOI: 10.1016/j.fct.2018.02.059;
  111. Bundesinstitut für Risikobewertung. Toxikologische Bewertung von Formaldehyd. (2006)
  112. Gaur, S. & Agnihotri, R. Health effects of trace metals in electronic cigarette aerosols—a systematic review. Biol. Trace Elem. Res. 188, 295-315 (2019) DOI: 10.1007/s12011-018-1423-x;
  113. Olmedo, P., Goessler, W., Tanda, S., Grau-Perez, M., Jarmul, S., Aherrera, A., Chen, R., Hilpert, M., Cohen, J. E., Navas-Acien, A. & Rule, A. M. Metal concentrations in e-cigarette liquid and aerosol samples: The contribution of metallic coils. Environ. Health Perspect. 126, Article 027010 (2018) DOI: 10.1289/EHP2175;
  114. Farsalinos, K. E. & Rodu, B. Metal emissions from e-cigarettes: a risk assessment analysis of a recently-published study. Inhal. Toxicol. 30, 321-326 (2018) DOI: 10.1080/08958378.2018.1523262;
  115. LeBouf, R. F., Burns, D. A., Ranpara, A., Attfield, K., Zwack, L. & Stefaniak, A. B. Headspace analysis for screening of volatile organic compound profiles of electronic juice bulk material. Anal. Bioanal. Chem. 410, 5951-5960 (2018) DOI: 10.1007/s00216-018-1215-3;
  116. Elias, J., Dutra, L. M., St Helen, G. & Ling, P. M. Revolution or redux? Assessing IQOS through a precursor product. Tob. Control 27, s102-s110 (2018) DOI: 10.1136/tobaccocontrol-2018-054327;
  117. Philip Morris International. THE IQOS STORY. The Evolution of Smoke-Free Products. (2019)
  118. Philip Morris International. World Health Organization report on tobacco: Fact versus fiction. (2019)—world-health-organization-report-on-tobacco
  119. van der Toorn, M., Frentzel, S., De Leon, H., Goedertier, D., Peitsch, M. C. & Hoeng, J. Aerosol from a candidate modified risk tobacco product has reduced effects on chemotaxis and transendothelial migration compared to combustion of conventional cigarettes. Food Chem. Toxicol. 86, 81-87 (2015) DOI: 10.1016/j.fct.2015.09.016;
  120. Poussin, C., Laurent, A., Peitsch, M. C., Hoeng, J. & De Leon, H. Systems toxicology-based assessment of the candidate modified risk tobacco product THS2.2 for the adhesion of monocytic cells to human coronary arterial endothelial cells. Toxicology 339, 73-86 (2016) DOI: 10.1016/j.tox.2015.11.007;
  121. Schaller, J. P., Keller, D., Poget, L., et al. Evaluation of the Tobacco Heating System 2.2. Part 2: Chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol. Regul. Toxicol. Pharmacol. 81, S27-S47 (2016) DOI: 10.1016/j.yrtph.2016.10.001;
  122. Titz, B., Boué, S., Phillips, B., et al. Effects of cigarette smoke, cessation, and switching to two heat-not-burn tobacco products on lung lipid metabolism in C57BL/6 and Apoe-/- mice-an integrative systems toxicology analysis. Toxicol. Sci. 149, 441-457 (2016) DOI: 10.1093/toxsci/kfv244;
  123. Bekki, K., Inaba, Y., Uchiyama, S. & Kunugita, N. Comparison of chemicals in mainstream smoke in heat-not-burn tobacco and combustion cigarettes. J. UOEH 39, 201-207 (2017) DOI: 10.7888/juoeh.39.201;
  124. Farsalinos, K. E., Yannovits, N., Sarri, T., Voudris, V. & Poulas, K. Nicotine delivery to the aerosol of a heat-not-burn tobacco product: Comparison with a tobacco cigarette and e-cigarettes. Nicotine Tob. Res. 20, 1004-1009 (2018) DOI: 10.1093/ntr/ntx138;
  125. Adriaens, K., Van Gucht, D. & Baeyens, F. IQOS™ vs. e-cigarette vs. tobacco cigarette: A direct comparison of short-term effects after overnight-abstinence. Int. J. Environ. Res. Public Health 15, 2902 (2018) DOI: 10.3390/ijerph15122902;
  126. Leigh, N. J., Palumbo, M. N., Marino, A. M., O’Connor, R. J. & Goniewicz, M. L. Tobacco-specific nitrosamines (TSNA) in heated tobacco product IQOS. Tob. Control 27, S37-S38 (2018) DOI: 10.1136/tobaccocontrol-2018-054318;
  127. Mallock, N., Boss, L., Burk, R., Danziger, M., Welsch, T., Hahn, H., Trieu, H. L., Hahn, J., Pieper, E., Henkler-Stephani, F., Hutzler, C. & Luch, A. Levels of selected analytes in the emissions of “heat not burn” tobacco products that are relevant to assess human health risks. Arch. Toxicol. 92, 2145-2149 (2018) DOI: 10.1007/s00204-018-2215-y;
  128. Drovandi, A., Salem, S., Barker, D., Booth, D. & Kairuz, T. Human biomarker exposure from cigarettes versus novel heat-not-burn devices: A systematic review and meta-analysis. Nicotine Tob. Res. (2019) DOI: 10.1093/ntr/ntz200;
  129. Lüdicke, F., Michael Ansari, S., Lama, N., Blanc, N., Bosilkovska, M., Donelli, A., Picavet, P., Baker, G., Haziza, C., Peitsch, M. & Weitkunat, R. Effects of switching to a heat-not-burn tobacco product on biologically relevant biomarkers to assess a candidate modified risk tobacco product: A randomized trial. Cancer Epidemiol. Biomarkers and Prev. 28, 1934-1943 (2019) DOI: 10.1158/1055-9965.EPI-18-0915;
  130. Pieper, E., Mallock, N., Henkler-Stephani, F. & Luch, A. Tabakerhitzer als neues Produkt der Tabakindustrie: Gesundheitliche Risiken. Bundesgesundheitsbl. 61, 1422-1428 (2018) DOI:;
  131. Haziza, C., de La Bourdonnaye, G., Donelli, A., Poux, V., Skiada, D., Weitkunat, R., Baker, G., Picavet, P. & Lüdicke, F. Reduction in exposure to selected harmful and potentially harmful constituents approaching those observed upon smoking abstinence in smokers switching to the Menthol Tobacco Heating System 2.2 for 3 months (Part 1). Nicotine Tob. Res. 22, 539-548 (2020) DOI: 10.1093/ntr/ntz013;
  132. Haziza, C., de La Bourdonnaye, G., Donelli, A., Skiada, D., Poux, V., Weitkunat, R., Baker, G., Picavet, P. & Ludicke, F. Favorable changes in biomarkers of potential harm to reduce the adverse health effects of smoking in smokers switching to the Menthol Tobacco Heating System 2.2 for 3 months (Part 2). Nicotine Tob. Res. 22, 549-559 (2020) DOI: 10.1093/ntr/ntz084;
  133. Collishaw, N. This should change everything: Using the toxic profile of heat-not-burn products as a performance standard to phase out combustible cigarettes. Tob. Control 28, 245-248 (2019) DOI: 10.1136/tobaccocontrol-2017-054219;
  134. Pratte, P., Cosandey, S. & Ginglinger, C. G. Investigation of solid particles in the mainstream aerosol of the Tobacco Heating System THS2.2 and mainstream smoke of a 3R4F reference cigarette. Hum. Exp. Toxicol. 36, 1115-1120 (2017) DOI: 10.1177/0960327116681653;
  135. Oviedo, A., Lebrun, S., Kogel, U., et al. Evaluation of the Tobacco Heating System 2.2. Part 6: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of a mentholated version compared with mentholated and non-mentholated cigarette smoke. Regul. Toxicol. Pharmacol. 81, S93-S122 (2016) DOI: 10.1016/j.yrtph.2016.11.004;
  136. Tabuchi, T., Gallus, S., Shinozaki, T., Nakaya, T., Kunugita, N. & Colwell, B. Heat-not-burn tobacco product use in Japan: Its prevalence, predictors and perceived symptoms from exposure to secondhand heat-not-burn tobacco aerosol. Tob. Control (2017) DOI: 10.1136/tobaccocontrol-2017-053947;
  137. Cummings, K. M., Nahhas, G. J. & Sweanor, D. T. What Is accounting for the rapid decline in cigarette sales in Japan? Int. J. Environ. Res. Public Health 17, E3570 (2020) DOI: 10.3390/ijerph17103570;
  138. CNB Television. Philip Morris CEO on Altria and the future of e-cigarettes. (2019)
  139. Deutsches Krebsforschungszentrum, Heidelberg. Rote Reihe Tabakprävention und Tabakkontrolle: Passivrauchen – ein unterschätztes Gesundheitsrisiko. (2005)
  140. Novo Argumente für den Fortschritt. Passivrauchen als statistisches Konstrukt. (2008)
  141. Taylor, R., Najafi, F. & Dobson, A. Meta-analysis of studies of passive smoking and lung cancer: Effects of study type and continent. Int. J. Epidemiol. 36, 1048-1059 (2007) DOI: 10.1093/ije/dym158;
  142. Aune, D., Schlesinger, S., Norat, T. & Riboli, E. Tobacco smoking and the risk of heart failure: A systematic review and meta-analysis of prospective studies. Eur. J. Prev. Cardiol. 26, 279-288 (2019) DOI: 10.1177/2047487318806658;
  143. Carreras, G., Lugo, A., Gallus, S., et al. Burden of disease attributable to second-hand smoke exposure: A systematic review. Prev. Med. 129, 105833 (2019) DOI: 10.1016/j.ypmed.2019.105833;
  144. Lipfert, F. W. & Wyzga, R. E. Longitudinal relationships between lung cancer mortality rates, smoking, and ambient air quality: a comprehensive review and analysis. Crit. Rev. Toxicol. 49, 790-818 (2019) DOI: 10.1080/10408444.2019.1700210;
  145. Wang, A., Kubo, J., Luo, J., et al. Active and passive smoking in relation to lung cancer incidence in the Women’s Health Initiative Observational Study prospective cohort. Ann. Oncol. 26, 221-230 (2015) DOI: 10.1093/annonc/mdu470;
  146. Peres, J. No clear link between passive smoking and lung cancer. J. Natl. Cancer Inst. 105, 1844-1846 (2013) DOI: 10.1093/jnci/djt365;
  147. Long, G. A. Comparison of select analytes in exhaled aerosol from e-cigarettes with exhaled smoke from a conventional cigarette and exhaled breaths. Int. J. Environ. Res. Public Health 11, 11177-11191 (2014) DOI: 10.3390/ijerph111111177;
  148. St.Helen, G., Havel, C., Dempsey, D. A., Jacob, P., III & Benowitz, N. L. Nicotine delivery, retention and pharmacokinetics from various electronic cigarettes. Addiction 111, 535-544 (2016) DOI: 10.1111/add.13183;
  149. McAuley, T. R., Hopke, P. K., Zhao, J. & Babaian, S. Comparison of the effects of e-cigarette vapor and cigarette smoke on indoor air quality. Inhal. Toxicol. 24, 850-857 (2012) DOI: 10.3109/08958378.2012.724728;
  150. McNeill, A., Etter, J. F., Farsalinos, K., Hajek, P., le Houezec, J. & McRobbie, H. A critique of a World Health Organization-commissioned report and associated paper on electronic cigarettes. Addiction 109, 2128–2134 (2014) DOI: 10.1111/add.12730;
  151. Liu, J., Liang, Q., Oldham, M. J., Rostami, A. A., Wagner, K. A., Gillman, I. G., Patel, P., Savioz, R. & Sarkar, M. Determination of selected chemical levels in room air and on surfaces after the use of cartridge-and tank-based e-vapor products or conventional cigarettes. Int. J. Environ. Res. Public Health 14, 969 (2017) DOI: 10.3390/ijerph14090969;
  152. Logue, J. M., Sleiman, M., Montesinos, V. N., Russell, M. L., Litter, M. I., Benowitz, N. L., Gundel, L. A. & Destaillats, H. Emissions from electronic cigarettes: Assessing vapers’ intake of toxic compounds, secondhand exposures, and the associated health impacts. Environ. Sci. Technol. 51, 9271-9279 (2017) DOI: 10.1021/acs.est.7b00710;
  153. van Drooge, B. L., Marco, E., Perez, N. & Grimalt, J. O. Influence of electronic cigarette vaping on the composition of indoor organic pollutants, particles, and exhaled breath of bystanders. Environ. Sci. Pollut. Res. 26, 4654‐4666 (2019) DOI: 10.1007/s11356-018-3975-x;
  154. O’Connell, G., Colard, S., Cahours, X. & Pritchard, J. D. An assessment of indoor air quality before, during and after unrestricted use of E-cigarettes in a small room. Int. J. Environ. Res. Public Health 12, 4889-4907 (2015) DOI: 10.3390/ijerph120504889;
  155. Schober, W., Fembacher, L., Frenzen, A. & Fromme, H. Passive exposure to pollutants from conventional cigarettes and new electronic smoking devices (IQOS, e-cigarette) in passenger cars. Int. J. Hyg. Environ. Health 222, 486-493 (2019) DOI: 10.1016/j.ijheh.2019.01.003;
  156. Kulmala, M. How particles nucleate and grow. Science 302, 1000-1001 (2003) DOI: 10.1126/science.1090848;
  157. Martuzevicius, D., Prasauskas, T., Setyan, A., O’Connell, G., Cahours, X., Julien, R. & Colard, S. Characterisation of the spatial and temporal dispersion differences between exhaled e-cigarette mist and cigarette smoke. Nicotine Tob. Res. 21, 1371-1377 (2019) DOI: 10.1093/ntr/nty121;
  158. Enomoto, M., Tierney, W. J. & Nozaki, K. Risk of human health by particulate matter as a source of air pollution – Comparison with tobacco smoking. J. Toxicol. Sci. 33, 251-267 (2008) DOI: 10.2131/jts.33.251;
  159. Bundesintitut für Risikobewertung. Nikotinfreie E-Shishas bergen gesundheitliche Risiken. (2015)
  160. Neuberger, M. The electronic cigarette: A wolf in sheep’s clothing. Wien. Klin. Wochenschr. 127, 385-387 (2015) DOI: 10.1007/s00508-015-0753-3;
  161. Interessensgemeinschaft E-Dampfen. BfR vs Professor Bernd Mayer. (2015)
  162. Stellungnahme der Innenraumhygienekommission (IRK) zu elektronischen Zigaretten (E-Zigaretten). Bundesgesundheitsbl. 59, 1660-1661 (2016) DOI: 10.1007/s00103-016-2464-y;
  163. Umweltbundesamt. Stellungnahme der Innenraumhygienekommission (IRK) zu elektronischen Zigaretten (E-Zigaretten). (2016)
  164. Justiz Online. Oberverwaltungsgericht NRW, 4 A 775/14. (2014)
  165. Krüsemann, E. J. Z., Boesveldt, S., De Graaf, K. & Talhout, R. An e-liquid flavor wheel: A shared vocabulary based on systematically reviewing e-Liquid flavor classifications in literature. Nicotine Tob. Res. 21, 1310-1319 (2019) DOI: 10.1093/ntr/nty101;
  166. Russell, C., McKeganey, N., Dickson, T. & Nides, M. Changing patterns of first e-cigarette flavor used and current flavors used by 20.836 adult frequent e-cigarette users in the USA. Harm Reduct. J. 15(2018) DOI: 10.1186/s12954-018-0238-6;
  167. Schneller, L. M., Bansal-Travers, M., Goniewicz, M. L., McIntosh, S., Ossip, D. & O’Connor, R. J. Use of flavored electronic cigarette refill liquids among adults and youth in the US—results from wave 2 of the population assessment of tobacco and health study (2014–2015). PLoS ONE 13, e0202744 (2018) DOI: 10.1371/journal.pone.0202744;
  168. Bundesinstitut für Risikobewertung. Süßstoff Sucralose: Beim Erhitzen von Lebensmitteln können gesundheitsschädliche Verbindungen entstehen. (2019)
  169. Jensen, R. P., Luo, W., Pankow, J. F., Strongin, R. M. & Peyton, D. H. Hidden formaldehyde in e-cigarette aerosols. N. Engl. J. Med. 372, 392-394 (2015) DOI: 10.1056/NEJMc1413069;
  170. Ochando, T., Mouret, J. R., Humbert-Goffard, A., Sablayrolles, J. M. & Farines, V. Vicinal diketones and their precursors in wine alcoholic fermentation: Quantification and dynamics of production. Food Res. Int. 103, 192-199 (2018) DOI: 10.1016/j.foodres.2017.10.040;
  171. Hubbs, A. F., Cummings, K. J., McKernan, L. T., Dankovic, D. A., Park, R. M. & Kreiss, K. Comment on Farsalinos et al., “Evaluation of Electronic Cigarette Liquids and Aerosol for the Presence of Selected Inhalation Toxins”. Nicotine Tob Res 17, 1288-1289 (2015) DOI: 10.1093/ntr/ntu338;
  172. Farsalinos, K. E., Kistler, K. A., Gillman, G. & Voudris, V. Why we consider the NIOSH-proposed safety limits for diacetyl and acetyl propionyl appropriate in the risk assessment of electronic cigarette liquid use: A response to Hubbs et al. Nicotine Tob. Res. 17, 1290-1291 (2015) DOI: 10.1093/ntr/ntv005;
  173. Kreiss, K., Gomaa, A., Kullman, G., Fedan, K., Simoes, E. J. & Enright, P. L. Clinical bronchiolitis obliterans in workers at a microwave-popcorn plant. N Engl J Med 347, 330-338 (2002) DOI: 10.1056/NEJMoa020300;
  174. Rose, C. S. Early detection, clinical diagnosis, and management of lung disease from exposure to diacetyl. Toxicology 388, 9-14 (2017) DOI: 10.1016/j.tox.2017.03.019;
  175. Hubbs, A. F., Goldsmith, W. T., Kashon, M. L., Frazer, D., Mercer, R. R., Battelli, L. A., Kullman, G. J., Schwegler-Berry, D., Friend, S. & Castranova, V. Respiratory toxicologic pathology of inhaled diacetyl in sprague-dawley rats. Toxicol. Pathol. 36, 330-344 (2008) DOI: 10.1177/0192623307312694;
  176. Morgan, D. L., Flake, G. P., Kirby, P. J. & Palmer, S. M. Respiratory toxicity of diacetyl in C57BL/6 mice. Toxicol. Sci. 103, 169-180 (2008) DOI: 10.1093/toxsci/kfn016;
  177. Pierce, J. S., Abelmann, A., Spicer, L. J., Adams, R. E. & Finley, B. L. Diacetyl and 2,3-pentanedione exposures associated with cigarette smoking: implications for risk assessment of food and flavoring workers. Crit. Rev. Toxicol. 44, 420-435 (2014) DOI: 10.3109/10408444.2014.882292;
  178. Fujioka, K. & Shibamoto, T. Determination of toxic carbonyl compounds in cigarette smoke. Environ Toxicol 21, 47-54 (2006) DOI: 10.1002/tox.20153;
  179. Farsalinos, K. E., Kistler, K. A., Gillman, G. & Voudris, V. Evaluation of electronic cigarette liquids and aerosol for the presence of selected inhalation toxins. Nicotine Tob. Res. 17, 168-174 (2015) DOI: 10.1093/ntr/ntu176;
  180. Allen, J. G., Flanigan, S. S., LeBlanc, M., Vallarino, J., MacNaughton, P., Stewart, J. H. & Christiani, D. C. Flavoring chemicals in e-Cigarettes: Diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, Including fruit-, candy-, and cocktail-flavored E-cigarettes. Environ. Health Perspect. 124, 733-739 (2016) DOI: 10.1289/ehp.1510185;
  181. Pierce, J. S., Abelmann, A. & Finley, B. L. Comment on “Flavoring Chemicals in E-Cigarettes: Diacetyl, 2,3-Pentanedione, and Acetoin in a Sample of 51 Products, Including Fruit-, Candy-, and Cocktail-Flavored E-Cigarettes”. Environ. Health Perspect. 124, A100-A101 (2016) DOI: 10.1289/ehp.1611350;
  182. Allen, J. G., Flanigan, S. S., LeBlanc, M., Vallarino, J., MacNaughton, P., Stewart, J. H. & Christiani, D. C. Response to “Comment on ‘Flavoring Chemicals in E-Cigarettes: Diacetyl, 2,3-Pentanedione, and Acetoin in a Sample of 51 Products, Including Fruit-, Candy-, and Cocktail-Flavored E-Cigarettes'”. Environ. Health Perspect. 124, A102-A103 (2016) DOI: 10.1289/Ehp348;
  183. Vardavas, C., Girvalaki, C., Vardavas, A., Papadakis, S., Tzatzarakis, M., Behrakis, P. & Tsatsakis, A. Respiratory irritants in e-cigarette refill liquids across nine European countries: a threat to respiratory health? Eur. Resp. J. 50, 1701698 (2017) DOI: 10.1183/13993003.01698-2017;
  184. Farsalinos, K. & Lagoumintzis, G. Toxicity classification of e-cigarette flavouring compounds based on European Union regulation: analysis of findings from a recent study. Harm Reduct. J. 16, 48 (2019) DOI: 10.1186/s12954-019-0318-2;
  185. Litt, M. D., Duffy, V. & Oncken, C. Cigarette smoking and electronic cigarette vaping patterns as a function of e-cigarette flavourings. Tob. Control 25 (Suppl. 2), ii67–ii72 (2016) DOI: 10.1136/tobaccocontrol-2016-053223;
  186. Villanti, A. C., Collins, L. K., Niaura, R. S., Gagosian, S. Y. & Abrams, D. B. Menthol cigarettes and the public health standard: a systematic review. BMC Public Health 17, 983 (2017) DOI: 10.1186/s12889-017-4987-z;
  187. Benowitz, N. L., Herrera, B. & Jacob, P. Mentholated cigarette smoking inhibits nicotine metabolism. J. Pharmacol. Exp. Ther. 310, 1208-1215 (2004) DOI: 10.1124/jpet.104.066902;
  188. Sarkar, M., Wang, J. & Liang, Q. Metabolism of nicotine and 4-(methylnitrosamino)-l-(3-pyridyl)-lbutanone (NNK) in menthol and non-menthol cigarette smokers. Drug Metab. Lett. 6, 198-206 (2012) DOI: 10.2174/1872312811206030007;
  189. Wickham, R. J. How menthol alters tobacco-smoking behavior: A biological perspective. Yale J. Biol. Med. 88, 279-287 (2015)
  190. Bundesministeriums für Ernährung und Landwirtschaft. Entwurf einer Zweiten Verordnung zur Änderung der Tabakerzeugnis-Verordnung. (2014)
  191. Bündnis für Tabakfreien Genuss e.V. Bundesrat spricht sich gegen absolutes „Menthol-Verbot“ aus – Votum für Höchstmengenregelung. (2017)
  192. Rosbrook, K. & Green, B. G. Sensory Effects of menthol and nicotine in an e-cigarette. Nicotine Tob. Res. 18, 1588-1595 (2016) DOI: 10.1093/ntr/ntw019;
  193. Fetterman, J. L., Weisbrod, R. M., Feng, B., Bastin, R., Tuttle, S. T., Holbrook, M., Baker, G., Robertson, R. M., Conklin, D. J., Bhatnagar, A. & Hamburg, N. M. Flavorings in tobacco products induce endothelial cell dysfunction. Arterioscler. Thromb. Vasc. Biol. 38, 1607-1615 (2018) DOI: 10.1161/ATVBAHA.118.311156;
  194. Wölkart, G., Kollau, A., Stessel, H., Russwurm, M., Koesling, D., Schrammel, A., Schmidt, K. & Mayer, B. Effects of flavoring compounds used in electronic cigarette refill liquids on endothelial and vascular function. PLoS One 14, e0222152 (2019) DOI: 10.1371/journal.pone.0222152;
  195. Mishra, P. K., Adameova, A., Hill, J. A., et al. Guidelines for evaluating myocardial cell death. Am. J. Physiol. 317, H891-H922 (2019) DOI: 10.1152/ajpheart.00259.2019;
  196. Behar, R. Z., Luo, W., Lin, S. C., Wang, Y., Valle, J., Pankow, J. F. & Talbot, P. Distribution, quantification and toxicity of cinnamaldehyde in electronic cigarette refill fluids and aerosols. Tob. Control 25, ii94-ii102 (2016) DOI: 10.1136/tobaccocontrol-2016-053224;
  197. Nystoriak, M. A., Kilfoil, P. J., Lorkiewicz, P. K., Ramesh, B., Kuehl, P. J., McDonald, J., Bhatnagar, A. & Conklin, D. J. Comparative effects of parent and heated cinnamaldehyde on the function of human iPSC-derived cardiac myocytes. Toxicol. In Vitro 61, 104648 (2019) DOI: 10.1016/j.tiv.2019.104648;
  198. Zhu, R., Liu, H., Liu, C., Wang, L., Ma, R., Chen, B., Li, L., Niu, J., Fu, M., Zhang, D. & Gao, S. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res. 122, 78-89 (2017) DOI: 10.1016/j.phrs.2017.05.019;
  199. Dorri, M., Hashemitabar, S. & Hosseinzadeh, H. Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug. Chem. Toxicol. 41, 338-351 (2018) DOI: 10.1080/01480545.2017.1417995; Drug Chem Toxicol
  200. Vasconcelos, N. G., Croda, J. & Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 120, 198-203 (2018) DOI: 10.1016/j.micpath.2018.04.036;
  201. Pisinger, C., Dagli, E., Filippidis, F. T., et al. ERS and tobacco harm reduction. Eur. Resp. J. 54, 1902009 (2019) DOI: 10.1183/13993003.02009-2019;
  202. Britton, J., George, J., Bauld, L., Agrawal, S., Moxham, J., Arnott, D., McNeill, A. & Hopkinson, N. S. A rational approach to e-cigarettes – challenging ERS policy on tobacco harm reduction. Eur. Resp. J., [published online ahead of print, 2020 Feb 2024] 2000166 (2020) DOI: 10.1183/13993003.00166-2020;
  203. Polosa, R., Morjaria, J. B., Caponnetto, P., Campagna, D., Russo, C., Alamo, A., Amaradio, M. D. & Fisichella, A. Effectiveness and tolerability of electronic cigarette in real-life: A 24-month prospective observational study. Intern. Emerg. Med. 9, 537-546 (2014) DOI: 10.1007/s11739-013-0977-z;
  204. Polosa, R., Morjaria, J., Caponnetto, P., Caruso, M., Strano, S., Battaglia, E. & Russo, C. Effect of smoking abstinence and reduction in asthmatic smokers switching to electronic cigarettes: Evidence for harm reversal. Int. J. Environ. Res. Public Health 11, 4965-4977 (2014) DOI: 10.3390/ijerph110504965;
  205. Polosa, R., Morjaria, J. B., Caponnetto, P., Caruso, M., Campagna, D., Amaradio, M. D., Ciampi, G., Russo, C. & Fisichella, A. Persisting long term benefits of smoking abstinence and reduction in asthmatic smokers who have switched to electronic cigarettes. Discov. Med. 21, 99-108 (2016)
  206. Polosa, R., Morjaria, J. B., Caponnetto, P., Prosperini, U., Russo, C., Pennisi, A. & Bruno, C. M. Evidence for harm reduction in COPD smokers who switch to electronic cigarettes. Respir. Res. 17, 166 (2016) DOI: 10.1186/s12931-016-0481-x;
  207. Polosa, R., Morjaria, J. B., Prosperini, U., Russo, C., Pennisi, A., Puleo, R., Caruso, M. & Caponnetto, P. Health effects in COPD smokers who switch to electronic cigarettes: a retrospective-prospective 3-year follow-up. Int J Chron Obstruct Pulmon Dis 13, 2533-2542 (2018) DOI: 10.2147/COPD.S161138;
  208. Bowler, R. P., Hansel, N. N., Jacobson, S., et al. Electronic cigarette use in US adults at risk for or with COPD: Analysis from two observational cohorts. J. Gen. Intern. Med. 32, 1315-1322 (2017) DOI: 10.1007/s11606-017-4150-7;
  209. Cummings, K. M. & Polosa, R. E-Cigarette and COPD: Unreliable conclusion about health risks. J. Gen. Intern. Med. 33, 784-785 (2018) DOI: 10.1007/s11606-018-4396-8;
  210. Sargent, R. P., Shepard, R. M. & Glantz, S. A. Reduced incidence of admissions for myocardial infarction associated with public smoking ban: before and after study. BMJ 328, 977-980 (2004) DOI: 10.1136/bmj.38055.715683.55;
  211. VapingPost. Stanton Glantz – Expert, or Extremist? (2017)
  212. Bhatta, D. N. & Glantz, S. A. Electronic cigarette use and myocardial infarction among adults in the US Population Assessment of Tobacco and Health. J. Am. Heart Assoc. 8, e012317 (2019) DOI: 10.1161/JAHA.119.012317;
  213. Brad Rodu – Tobacco Truth. Open Letter to the American Heart Association: #QuitLying. (2019)
  214. [Anonymous]. Retraction to: Electronic Cigarette Use and Myocardial Infarction Among Adults in the US Population Assessment of Tobacco and Health (Journal of the American Heart Association, (2019), 8, 12, (e012317), 10.1161/JAHA.119.012317). J. Am. Heart Assoc. 9, e014519 (2020) DOI: 10.1161/JAHA.119.014519;
  215. Bhatta, D. N. & Glantz, S. A. Association of e-cigarette use with respiratory disease among adults: A longitudinal analysis. Am. J. Prev. Med. 58, 182-190 (2020) DOI: 10.1016/j.amepre.2019.07.028;
  216. Mons, U. E-Zigaretten-Studien: Masse statt Klasse. Dtsch. Arztebl. International 117, A-1118 (2020)
  217. Bernd Mayer. Erfahrungsberichte von Umsteigern. (2020)
  218. Kuntic, M., Oelze, M., Steven, S., Kroller-Schon, S., Kalinovic, S., Frenis, K., Vujacic-Mirski, K., Huesmann, R., Hoffmann, T., Daiber, A. & Munzel, T. Short-term e-cigarette vapor exposure causes vascular oxidative stress and dysfunction – evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). Eur. Heart J. 9, [published online ahead of print, 2019 Nov 2013] (2019) DOI: 10.1093/eurheartj/ehz772;
  219. Heitzer, T., Brockhoff, C., Mayer, B., Warnholtz, A., Mollnau, S., Henne, S., Meinertz, T. & Münzel, T. Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers – Evidence for a dysfunctional nitric oxide synthase. Circ. Res. 86, E36-E41 (2000) DOI: 10.1161/01.res.86.2.e36.;
  220. Mayer, B. Acrolein exposure from electronic cigarettes. Eur. Heart J. 41, 1523 (2020)
  221. George, J., Hussain, M., Vadiveloo, T., Ireland, S., Hopkinson, P., Struthers, A. D., Donnan, P. T., Khan, F. & Lang, C. C. Cardiovascular effects of switching from tobacco cigarettes to electronic cigarettes. J. Am. Coll. Cardiol. 74, 3112-3120 (2019) DOI: 10.1016/j.jacc.2019.09.067;
  222. Thomson, R., McDaid, L., Emery, J., Phillips, L., Naughton, F., Cooper, S., Dyas, J. & Coleman, T. Practitioners’ views on nicotine replacement therapy in pregnancy during lapse and for harm reduction: A qualitative study. Int. J. Environ. Res. Public Health 16, 4791 (2019) DOI: 10.3390/ijerph16234791;
  223. Cooper, S., Taggar, J., Lewis, S., Marlow, N., Dickinson, A., Whitemore, R. & Coleman, T. Effect of nicotine patches in pregnancy on infant and maternal outcomes at 2 years: Follow-up from the randomised, double-blind, placebo-controlled SNAP trial. Lancet Respir. Med. 2, 728-737 (2014) DOI: 10.1016/S2213-2600(14)70157-2;
  224. Tran, D. T., Preen, D. B., Einarsdottir, K., Kemp-Casey, A., Randall, D., Jorm, L. R., Choi, S. K. Y. & Havard, A. Use of smoking cessation pharmacotherapies during pregnancy is not associated with increased risk of adverse pregnancy outcomes: A population-based cohort study. BMC Med. 18, 15 (2020) DOI: 10.1186/s12916-019-1472-9;
  225. Claire, R., Chamberlain, C., Davey, M. A., Cooper, S. E., Berlin, I., Leonardi-Bee, J. & Coleman, T. Pharmacological interventions for promoting smoking cessation during pregnancy. Cochrane Database Syst. Rev. 3, CD010078 (2020) DOI: 10.1002/14651858.CD010078.pub3;
  226. Use of electronic cigarettes before, during and after pregnancy. A guide for maternity and other healthcare professionals. (2019)
  227. Mehra, V. M., Keethakumar, A., Bohr, Y. M., Abdullah, P. & Tamim, H. The association between alcohol, marijuana, illegal drug use and current use of E-cigarette among youth and young adults in Canada: Results from Canadian Tobacco, Alcohol and Drugs Survey 2017. BMC Public Health 19(2019) DOI: 10.1186/s12889-019-7546-y;
  228. Meernik, C. & Goldstein, A. O. Should clinicians recommend e-cigarettes to their patients who smoke? No. Ann. Fam. Med. 14, 302-303 (2016) DOI: 10.1370/afm.1961;
  229. Clive Bates – The counterfactual. Ten perverse intellectual contortions: a guide to the sophistry of anti-vaping activists. (2018)
  230. Nutt, D. J., King, L. A. & Phillips, L. D. Drug harms in the UK: A multicriteria decision analysis. Lancet 376, 1558-1565 (2010) DOI: 10.1016/S0140-6736(10)61462-6;
  231. Nutt, D. J., Phillips, L. D., Balfour, D., Curran, H. V., Dockrell, M., Foulds, J., Fagerström, K., Letlape, K., Milton, A., Polosa, R., Ramsey, J. & Sweanor, D. Estimating the harms of nicotine-containing products using the MCDA approach. Eur. Addict. Res. 20, 218-225 (2014) DOI: 10.1159/000360220;
  232. Public Health England. E-cigarettes: an evidence update. A report commissioned by Public Health England. (2015)
  233. Public Health England. Vaping in England: an evidence update including mental health and pregnancy, March 2020, (2020)
  234. [Anonymous]. E-cigarettes: Public Health England’s evidence-based confusion. Lancet 386, 829 (2015) DOI: 10.1016/S0140-6736(15)00042-2;
  235. Polosa, R. E-cigarettes: Public Health England’s evidence based confusion? Lancet 386, 1237-1238 (2015) DOI: 10.1016/S0140-6736(15)00133-6;
  236. C.V. Phillips – Saying e-cigarettes are “95 % less harmful” is a very bad idea (part 143 of 10,000). (2016)
  237. Wiebel, J. F., Gohlke, H. & Loddenkemper, R. E-Zigaretten: Eine unterschätzte Gefahr für Lunge und Herz-Kreislauf Vergleich des Schadenspotentials von E-Zigaretten und Tabakzigaretten. Zwischenbilanz zum Weltnichtrauchertag 2019. Ärztlicher Arbeitskreis (2019)
  238. Canistro, D., Vivarelli, F., Cirillo, S., et al. E-cigarettes induce toxicological effects that can raise the cancer risk. Sci. Rep. 7, 2028 (2017) DOI: 10.1038/s41598-017-02317-8;
  239. Stephens, W. E. Comparing the cancer potencies of emissions from vapourised nicotine products including e-cigarettes with those of tobacco smoke. Tob. Control 27, 10-17 (2018) DOI: 10.1136/tobaccocontrol-2017-053808;
  240. Slob, W., Soeteman-Hernández, L. G., Bil, W., Staal, Y. C. M., Stephens, W. E. & Talhout, R. A method for comparing the impact on carcinogenicity of tobacco products: A case study on heated tobacco versus cigarettes. Risk Analysis, [published online ahead of print, 2020 May 2021] (2020) DOI: 10.1111/risa.13482;
  241. Flacco, M. E., Fiore, M., Acuti Martellucci, C., Ferrante, M., Gualano, M. R., Liguori, G., Bravi, F., Pirone, G. M., Marzuillo, C. & Manzoli, L. Tobacco vs. electronic cigarettes: absence of harm reduction after six years of follow-up. Eur. Rev. Med. Pharmacol. Sci. 24, 3923-3934 (2020) DOI: 10.26355/eurrev_202004_20859;
  242. Dampf im Bild TV. Interview der WELT Redaktion mit Dr. Thomas Hering. (2018)
  243. Roberts, C. K., Hevener, A. L. & Barnard, R. J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 3, 1-58 (2013) DOI: 10.1002/cphy.c110062;
  244. Piirtola, M., Jelenkovic, A., Latvala, A., et al. Association of current and former smoking with body mass index: A study of smoking discordant twin pairs from 21 twin cohorts. PLoS ONE 13, e0200140 (2018) DOI: 10.1371/journal.pone.0200140;
  245. Artese, A., Stamford, B. A. & Moffatt, R. J. Cigarette smoking: An accessory to the development of insulin resistance. Am. J. Lifestyle Med. 13, 602-605 (2019) DOI: 10.1177/1559827617726516;
  246. Eliasson, B., Taskinen, M. R. & Smith, U. Long-term use of nicotine gum is associated with hyperinsulinemia and insulin resistance. Circulation 94, 878-881 (1996) DOI: 10.1161/01.CIR.94.5.878;
  247. Bernd Mayer – Youtube. Dampfen bei Übergewicht und Diabetes? (2019)
  248. Deutsches Kompetenzzentrum Gesundheitsförderung und Diätetik e.V. (DKGD). Pro und Kontra Süßstoff. (2009)
  249. Bonnet, F., Tavenard, A., Esvan, M., Laviolle, B., Viltard, M., Lepicard, E. M. & Lainé, F. Consumption of a carbonated beverage with high-intensity sweeteners has no effect on insulin sensitivity and secretion in nondiabetic adults. J. Nutr. 148, 1293-1299 (2018) DOI: 10.1093/jn/nxy100;
  250. East, K., Brose, L. S., McNeill, A., Cheeseman, H., Arnott, D. & Hitchman, S. C. Harm perceptions of electronic cigarettes and nicotine: A nationally representative cross-sectional survey of young people in Great Britain. Drug Alcohol Depend. 192, 257-263 (2018) DOI: 10.1016/j.drugalcdep.2018.08.016;
  251. NORC at the University of Chicago. Public believes nicotine-based smoking and vaping products are more harmful than those Containing THC. (2019)
  252. Huang, J., Feng, B., Weaver, S. R., Pechacek, T. F., Slovic, P. & Eriksen, M. P. Changing perceptions of harm of e-cigarette vs cigarette use among adults in 2 US national surveys from 2012 to 2017. JAMA Netw. Open 2, e191047 (2019) DOI: 10.1001/jamanetworkopen.2019.1047;
  253. Lund, K. E. & Vedoy, T. F. Relative risk perceptions between snus and cigarettes in a snus-prevalent society – an observational study over a 16 year period. Int. J. Environ. Res. Public Health 16, 879 (2019) DOI: 10.3390/ijerph16050879;
  254. Bundesinstitut für Risikobewertung. BfR-Verbrauchermonitor 2019 | Spezial E-Zigaretten. (2019)
  255. PRESSEPORTAL – Philip Morris GmbH. Risikoreduzierung für Raucher: Kartografie zeigt großen Informationswunsch bei deutschen Gesundheitsexperten. (2020)
  256. Bell, K., Salmon, A., Bowers, M., Bell, J. & McCullough, L. Smoking, stigma and tobacco ‘denormalization’: Further reflections on the use of stigma as a public health tool. A commentary on Social Science & Medicine’s Stigma, Prejudice, Discrimination and Health Special Issue (67: 3). Soc. Sci. Med. 70, 795-799 (2010) DOI: 10.1016/j.socscimed.2009.09.060;
  257. Sæbø, G. & Scheffels, J. Assessing notions of denormalization and renormalization of smoking in light of e-cigarette regulation. Int. J. Drug Policy 49, 58-64 (2017) DOI: 10.1016/j.drugpo.2017.07.026;
  258. Patel, R. R. & Schmidt, H. Should employers be permitted not to hire smokers? A review of US legal provisions. Int. J. Health Policy Manag. 6, 701-706 (2017) DOI: 10.15171/ijhpm.2017.33;
  259. Díez-Izquierdo, A., Cassanello-Peñarroya, P., Lidón-Moyano, C., Matilla-Santander, N., Balaguer, A. & Martínez-Sánchez, J. M. Update on thirdhand smoke: A comprehensive systematic review. Environmental Research 167, 341-371 (2018) DOI: 10.1016/j.envres.2018.07.020;
  260. Bush, D. & Goniewicz, M. L. A pilot study on nicotine residues in houses of electronic cigarette users, tobacco smokers, and non-users of nicotine-containing products. Int. J. Drug Policy 26, 609-611 (2015) DOI: 10.1016/j.drugpo.2015.03.003;
  261. Khachatoorian, C., Jacob, P., Benowitz, N. L. & Talbot, P. Electronic cigarette chemicals transfer from a vape shop to a nearby business in a multiple-tenant retail building. Tob. Control 28, 519-525 (2019) DOI: 10.1136/tobaccocontrol-2018-054316;
  262. Khachatoorian, C., Jacob, P., Sen, A., Zhu, Y., Benowitz, N. L. & Talbot, P. Identification and quantification of electronic cigarette exhaled aerosol residue chemicals in field sites. Environmental Research 170, 351-358 (2019) DOI: 10.1016/j.envres.2018.12.027;
  263. Chen, J., Ho, S. Y., Leung, L. T., Wang, M. P. & Lam, T. H. Adolescent support for tobacco control policies and associations with tobacco denormalization beliefs and harm perceptions. Int. J. Environ. Res. Public Health 16, 147 (2019) DOI: 10.3390/ijerph16010147;
  264. Kang, H. & Cho, S. I. Cohort effects of tobacco control policy: Evidence to support a tobacco-free norm through smoke-free policy. Tob. Control 29, 96-102 (2020) DOI: 10.1136/tobaccocontrol-2018-054536;
  265. O’Connor, R. J., Rees, V. W., Rivard, C., Hatsukami, D. K. & Cummings, K. M. Internalized smoking stigma in relation to quit intentions, quit attempts, and current e-cigarette use. Subst. Abus. 38, 330-336 (2017) DOI: 10.1080/08897077.2017.1326999;
  266. Lozano, P., Thrasher, J. F., Forthofer, M., Hardin, J., Shigematsu, L. M. R., Arillo Santillan, E. & Fleischer, N. L. Smoking-related stigma: A public health tool or a damaging force? Nicotine Tob. Res. 22, 96-103 (2020) DOI: 10.1093/ntr/nty151;
  267. Bayer, R. & Bachynski, K. E. Banning smoking in parks and on beaches: Science, policy, and the politics of denormalization. Health Aff. 32, 1291-1298 (2013) DOI: 10.1377/hlthaff.2012.1022;
  268. Scott, N., Crane, M., Lafontaine, M., Seale, H. & Currow, D. Stigma as a barrier to diagnosis of lung cancer: patient and general practitioner perspectives. Prim. Health Care Res. Dev. 16, 618-622 (2015) DOI: 10.1017/S1463423615000043;
  269. King, A. C., Smith, L. J., McNamara, P. J., Matthews, A. K. & Fridberg, D. J. Passive exposure to electronic cigarette (E-cigarette) use increases desire for combustible and e-cigarettes in young adult smokers. Tob. Control 24, 501-504 (2015) DOI: 10.1136/tobaccocontrol-2014-051563;
  270. Hallingberg, B., Maynard, O. M., Bauld, L., Brown, R., Gray, L., Lowthian, E., MacKintosh, A. M., Moore, L., Munafo, M. R. & Moore, G. Have e-cigarettes renormalised or displaced youth smoking? Results of a segmented regression analysis of repeated cross sectional survey data in England, Scotland and Wales. Tob. Control 29, 207-216 (2020) DOI: 10.1136/tobaccocontrol-2018-054584;
  271. Bauld, L., Mackintosh, A. M., Eastwood, B., Ford, A., Moore, G., Dockrell, M., Arnott, D., Cheeseman, H. & McNeill, A. Young people’s use of e-cigarettes across the united kingdom: Findings from five surveys 2015–2017. Int. J. Environ. Res. Public Health 14, 973 (2017) DOI: 10.3390/ijerph14090973;
  272. Foxon, F. & Selya, A. S. Electronic cigarettes, nicotine use trends, and use initiation ages among US adolescents from 1999–2018. Addiction, [published online ahead of print, 2020 Apr 2025] (2020) DOI: doi: 10.1111/add.15099;
  273. ash – action on smoking and health. Use of e-cigarettes (vaporisers) among adults in Great Britain. (2019)
  274. Marty’s Megastore 1210 Wien. TPD 2016 Deutscher Bundestag Landwirtschaftsausschuss E-Zigarette Dr. Bernd Mayer. (2016)
  275. NEO MAGAZIN ROYALE. Homöopathie wirkt* | NEO MAGAZIN ROYALE mit Jan Böhmermann – ZDFneo. (2019)
  276. EUR-Lex. The precautionary principle. (2000)
  277. ARD – Tagesschau. Robert Loddenkemper, Pneumologe, zur Schädlichkeit von E-Zigaretten. (2019)
  278. Centers for Disease Control and Prevention. Outbreak of Lung Injury Associated with the Use of E-Cigarette, or Vaping, Products. (2020)
  279. Marlière, C., De Greef, J., Gohy, S., Hoton, D., Wallemacq, P., Jacquet, L. M. & Belkhir, L. Fatal E-cigarette or vaping associated lung injury (EVALI): A first case report in Europe. Eur. Resp. J., [published online ahead of print, 2020 Mar 2026] (2020) DOI: 10.1183/13993003.00077-2020;
  280. Nau media AG. Werden Menschen durch E-Zigaretten lungenkrank? (2019)
  281. Morning Consult. As vaping-related lung illnesses worsen, public holds e-cigarettes like Juul culpable. (2019)
  282. Leafly. Vape pen lung disease has insiders eyeing misuse of new additives. (2019)
  283. Butt, Y. M., Smith, M. L., Tazelaar, H. D., Vaszar, L. T., Swanson, K. L., Cecchini, M. J., Boland, J. M., Bois, M. C., Boyum, J. H., Froemming, A. T., Khoor, A., Mira-Avendano, I., Patel, A. & Larsen, B. T. Pathology of vaping-associated lung injury. N. Engl. J. Med. 381, 1780-1781 (2019) DOI: 10.1056/NEJMc1913069;
  284. Layden, J. E., Ghinai, I., Pray, I., et al. Pulmonary illness related to e-cigarette use in Illinois and Wisconsin – Final report. N. Engl. J. Med. 382, 903-916 (2020) DOI: 10.1056/NEJMoa1911614;
  285. Thakrar, P. D., Boyd, K. P., Swanson, C. P., Wideburg, E. & Kumbhar, S. S. E-cigarette, or vaping, product use-associated lung injury in adolescents: a review of imaging features. Pediatr. Radiol. 50, 338-344 (2020) DOI: 10.1007/s00247-019-04572-5;
  286. Bhat, T. A., Kalathil, S. G., Bogner, P. N., Blount, B. C., Goniewicz, M. L. & Thanavala, Y. M. An animal model of inhaled Vitamin E acetate and Evali-like lung injury. N. Engl. J. Med. 382, 1175-1177 (2020) DOI: 10.1056/NEJMc2000231;
  287. Wu, D. & O’Shea, D. F. Potential for release of pulmonary toxic ketene from vaping pyrolysis of Vitamin E acetate. Proc. Natl. Acad. Sci. U.S.A. 117, 6349-6355 (2020) DOI: 10.1073/pnas.1920925117;
  288. Narimani, M. & da Silva, G. Does “Dry Hit” vaping of Vitamin E acetate contribute to EVALI? Simulating toxic ketene formation during E-cigarette use. ChemRxiv, Posted date: 02/03/2020 (2020) DOI:;
  289. Prof. Michael Siegel. The Rest of the Story: Tobacco and Alcohol News Analysis and Commentary… .Providing the whole story behind tobacco and alcohol news. (2020)
  290. Vaping360, A Look Back at CDC’s Award-Nominated “EVALI” Response. (2020)
  291. Arcavi, L. & Benowitz, N. L. Cigarette smoking and infection. Arch. Int. Med. 164, 2206-2216 (2004) DOI: 10.1001/archinte.164.20.2206;
  292. Feldman, C. & Anderson, R. Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems. J. Infect. 67, 169-184 (2013)
  293. Kalil, A. C. & Thomas, P. G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care 23, 258 (2019) DOI: 10.1186/s13054-019-2539-x;
  294. Baskaran, V., Murray, R. L., Hunter, A., Lim, W. S. & McKeever, T. M. Effect of tobacco smoking on the risk of developing community acquired pneumonia: A systematic review and meta-analysis. PLoS ONE 14, e0220204 (2019) DOI: 10.1371/journal.pone.0220204;
  295. Hespanhol, V. P. & Barbara, C. Pneumonia mortality, comorbidities matter? Pulmonology, S2531-0437(2519)30205-30203 Online ahead of print (2019) DOI: 10.1016/j.pulmoe.2019.10.003;
  296. The Influence Foundation – Filter. Anti-Vaping Zealots Find Opportunity in the Pandemic. (2020)
  297. reason Foundation. While a Real Epidemic Raged, the Surgeon General Was Spreading Misinformation About Masks and Vaping. (2020)
  298. Volkow, N. D. Collision of the COVID-19 and addiction epidemics. Ann. Intern. Med., [published online ahead of print, 2020 Apr 2022] (2020) DOI: 10.7326/M20-1212;
  299. Madison, M. C., Landers, C. T., Gu, B. H., et al. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J. Clin. Invest. 129, 4290-4304 (2019) DOI: 10.1172/JCI128531;
  300. UCSF Center for Tobacco Control Research and Education. UCSF adds smoking and vaping nicotine and cannabis to COVID-19 triage protocol. (2020)
  301. Farsalinos, K., Barbouni, A. & Niaura, R. Smoking, vaping and hospitalization for COVID-19. Qeios (2020) DOI: 10.32388/Z69O8A.13;
  302. CDC COVID-19 Response Team. Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019 – United States, February 12-March 28, 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 382-386 (2020) 10.15585/mmwr.mm6913e2;
  303. Dreher, M., Kersten, A., Bickenbach, J., et al. Charakteristik von 50 hospitalisierten COVID-19-Patienten mit und ohne ARDS. Dtsch. Arztebl. Int. 117, 271-278 (2020) DOI: 10.3238/arztebl.2020.0271;
  304. Miyara, M., Tubach, F., Pourcher, V., Morelot-Panzini, C., Pernet, J., Haroche, J., Lebbah, S., Morawiec, E., Gorochov, G., Caumes, E., Hausfater, P., Combes, A., Similowski, T. & Amoura, Z. Low incidence of daily active tobacco smoking in patients with symptomatic COVID-19. Qeios (2020) DOI: 10.32388/WPP19W.2;
  305. Simons, D., Shahab, L., Brown, J. & Perski, O. The association of smoking status with SARS-CoV-2 infection, hospitalisation and mortality from COVID-19: A living rapid evidence review. Qeios (2020) DOI: doi:10.32388/UJR2AW.2.;
  306. Richardson, S., Hirsch, J. S., Narasimha, M., et al. Comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA, [published online ahead of print, 2020 Apr 2022] (2020) DOI: 10.1001/jama.2020.6775;
  307. Gerlach, H., Pappert, D., Lewandowski, K., Rossaint, R. & Falke, K. J. Long-term inhalation with evaluated low doses of nitric oxide for selective improvement of oxygenation in patients with adult respiratory distress syndrome. Intensive Care Med. 19, 443-449 (1993) DOI: 10.1007/BF01711084;
  308. Monteil, V., Kwon, H., Prado, P., et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, Journal pre-proof (2020) DOI: 10.1016/j.cell.2020.04.004;
  309. Wang, H., Yu, M., Ochani, M., Amelia, C. A., Tanovic, M., Susarla, S., Li, J. H., Wang, H., Yang, N., Ulloa, L., Al-Abed, Y., Czura, C. J. & Tracey, K. J. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384-388 (2003) DOI: 10.1038/nature01339;
  310. Yue, X., Basting, T. M., Flanagan, T. W., Xu, J., Lobell, T. D., Gilpin, N. W., Gardner, J. D. & Lazartigues, E. Nicotine downregulates the compensatory angiotensin-converting enzyme 2/angiotensin type 2 receptor of the renin-angiotensin system. Ann. Am. Thorac. Soc. 15, S126-S127 (2018) DOI: 10.1513/AnnalsATS.201706-464MG;
  311. Changeux, J. P., Amoura, Z., Rey, F. & Miyara, M. A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. Qeios (2020) DOI: 10.32388/FXGQSB;
  312. Farsalinos, K., Niaura, R. & Poulas, K. COVID-19, a disease of the nicotinic cholinergic system? Nicotine may be protective. Qeios (2020) DOI: 10.32388/JFLAE3.2.;
  313. Farsalinos, K., Niaura, R., Le Houezec, J., Barbouni, A., Tsatsakis, A., Kouretas, D., Vantarakis, A. & Poulas, K. Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol. Rep., [published online ahead of print April 30 2020] (2020) DOI: 10.1016/j.toxrep.2020.04.012;
  314. France Inter. Une étude clinique bientôt lancée pour déterminer les effets de la nicotine sur le Covid-19. (2020)
  315. Bloomberg. Philip Morris money is funding pro-vaping virus spin. (2020)
  316. STOP. Stopping Tobacco Organizations & Products. Review of controversial french studies on link between smoking and COVID-19. (2020)
  317. Altria. Altria’s Third-Quarter 2019 Earnings Conference Call. (2019)
  318. GALLUP. Americans say Marijuana vaping less harmful than tobacco. (2018)
  319. ash – action on smoking and health. In 2019 around half as many Britons now vape as smoke, and the majority are ex-smokers. (2019)
  320. Farsalinos, K., Siakas, G., Poulas, K., Voudris, V., Merakou, K. & Barbouni, A. E-cigarette use is strongly associated with recent smoking cessation: an analysis of a representative population sample in Greece. Intern. Emerg. Med. 14, 835-842 (2019) DOI: 10.1007/s11739-018-02023-x;
  321. Hajek, P., Phillips-Waller, A., Przulj, D., Pesola, F., Myers Smith, K., Bisal, N., Li, J., Parrott, S., Sasieni, P., Dawkins, L., Ross, L., Goniewicz, M., Wu, Q. & McRobbie, H. J. A randomized trial of e-cigarettes versus nicotine-replacement therapy. N. Engl. J. Med. 380, 629-637 (2019) DOI: 10.1056/NEJMoa1808779;
  322. Cox, S., Dawkins, L., Doshi, J. & Cameron, J. Effects of e-cigarettes versus nicotine replacement therapy on short-term smoking abstinence when delivered at a community pharmacy. Addict. Behav. Rep. 10, 100202 (2019) DOI: 10.1016/j.abrep.2019.100202;
  323. Borrelli, B. & O’Connor, G. T. E-cigarettes to assist with smoking cessation. N. Engl. J. Med. 380, 678-679 (2019) DOI: 10.1056/NEJMe1816406;
  324. Jackson, S. E., Farrow, E., Brown, J. & Shahab, L. Is dual use of nicotine products and cigarettes associated with smoking reduction and cessation behaviours? A prospective study in England. BMJ Open 10, e036055 (2020) DOI: 10.1136/bmjopen-2019-036055;
  325. Kalkhoran, S. & Glantz, S. A. E-cigarettes and smoking cessation in real-world and clinical settings: A systematic review and meta-analysis. Lancet Respir. Med. 4, 116-128 (2016) DOI: 10.1016/S2213-2600(15)00521-4;
  326. Hajek, P., McRobbie, H. & Bullen, C. E-cigarettes and smoking cessation. Lancet Respir. Med. 4, e23 (2016) DOI: 10.1016/S2213-2600(16)30024-8;
  327. Gomajee, R., El-Khoury, F., Goldberg, M., Zins, M., Lemogne, C., Wiernik, E., Lequy-Flahault, E., Romanello, L., Kousignian, I. & Melchior, M. Association between electronic cigarette use and smoking reduction in France. JAMA Intern. Med. 179, 1193-1200 (2019) DOI: 10.1001/jamainternmed.2019.1483;
  328. The Real Cost. Vaping Is An Epidemic | The Real Cost. (2018)
  329. DEBRA. Deutsche Befragung zum Rauchverhalten. (2020)
  330. ash – action on smoking and health. Use of e-cigarettes among young people in Great Britain. (2019)
  331. Centers for Disease Control and Prevention (CDC). Youth and Tobacco Use. (2019)
  332. Brad Rodu – Tobacco Truth. The 2018 American Teen Vaping Epidemic, Recalculated. (2019)
  333. Morgenstern, M., Nies, A., Goecke, M. & Hanewinkel, R. E-Cigarettes and the use of conventional cigarettes. A cohort study in 10th grade students in Germany. Dtsch. Arztebl. Int. 115, 243-248 (2018) DOI: 10.3238/arztebl.2018.0243;
  334. Phillips, C. V. Gateway effects: Why the cited evidence does not upport their existence for low-risk tobacco products (and what evidence would). Int. J. Environ. Res. Public Health 12, 5439-5464 (2015) DOI: 10.3390/ijerph120505439;
  335. Kandel, E. R. & Kandel, D. B. A molecular basis for nicotine as a gateway drug. N. Engl. J. Med. 371, 932-943 (2014) DOI: 10.1056/NEJMsa1405092;
  336. Consumer Advocates for Smoke-Free Alternatives Assoc. (CASAA). New claims that e-cigarettes are a gateway to cocaine use are junk science. (2014)
  337. CBS Baltimore. Vaping Prompts Maryland School To Remove Bathroom Doors. (2018)
  338. New York Post. Alabama school removes bathroom stall doors to stop students from vaping. (2019)
  339. Du, P., Bascom, R., Fan, T., Sinharoy, A., Yingst, J., Mondal, P. & Foulds, J. Changes in flavor preference in a cohort of long-term electronic cigarette users. Ann. Am. Thorac. Soc. (2020) DOI: 10.1513/AnnalsATS.201906-472OC;
  340. Clive Bates – The counterfactual. The US vaping flavour ban: twenty things you should know. (2019)
  341. Talih, S., Salman, R., El-Hage, R., Karam, E., Karaoghlanian, N., El-Hellani, A., Saliba, N. & Shihadeh, A. Characteristics and toxicant emissions of JUUL electronic cigarettes. Tob. Control 28, 678-680 (2019) DOI: 10.1136/tobaccocontrol-2018-054616;
  342. Pankow, J. F., Kim, K., McWhirter, K. J., Luo, W., Escobedo, J. O., Strongin, R. M., Duell, A. K. & Peyton, D. H. Benzene formation in electronic cigarettes. PloS One 12, e0173055 (2017) DOI: 10.1371/journal.pone.0173055;
  343. Dr. Farsalinos – E-Cigarette Research. Study titled „Benzene formation in e-cigarettes” found that air has more benzene than e-cigs. (2017)
  344. Morean, M. E., Krishnan-Sarin, S. & S. O’Malley, S. Assessing nicotine dependence in adolescent e-cigarette users: The 4-item Patient-Reported Outcomes Measurement Information System (PROMIS) Nicotine Dependence Item Bank for electronic cigarettes. Drug Alcohol Depend. 188, 60-63 (2018) DOI: 10.1016/j.drugalcdep.2018.03.029;
  345. Vogel, E. A., Ramo, D. E. & Rubinstein, M. L. Prevalence and correlates of adolescents’ e-cigarette use frequency and dependence. Drug Alcohol Depend. 188, 109-112 (2018) DOI: 10.1016/j.drugalcdep.2018.03.051;
  346. Centers for Disease Control and Prevention. Youth Risk Behavior Surveillance — United States, 2017. Supplementary Tables 7-15: Behaviors that Contribute to Unintentional Injuries. (2018)
  347. World Health Organization. E-cigarettes are harmful to health. (2020)
  348. Süddeutsche Zeitung. Cyberkriminelle entdecken E-Zigaretten für sich. (2016)
  349. National Affairs. Sally Satel: The E-Cigarette Revolution That Wasn’t. (2020)’t
  350. Tiihonen, J., Ronkainen, K., Kangasharju, A. & Kauhanen, J. The net effect of smoking on healthcare and welfare costs. A cohort study. BMJ Open 2, e001678 (2012) DOI: 10.1136/bmjopen-2012-001678;
  351. Lungenfachklinik Immenhausen. Kurs zur Tabakentwöhnung. (2020)
  352. Lungenärzte im Netz. Das Dampfen nikotinhaltiger E-Zigaretten beeinträchtigt die Selbstreinigung der Atemwege. (2019)
  353. Foundation for a Smoke-Free World. Global Trends in Nicotine – 2019 Update. (2019)
  354. Centers for Disease Control and Prevention. Cancers linked to tobacco use make up 40 % of all cancers diagnosed in the United States. (2016)
  355. DKFZ – Deutsches Krebsforschungszentrum. Aus der Wissenschaft – für die Politik. Regulierungsempfehlungen für elektronische Inhalationsprodukte. (2014)
  356. SPIEGEL Wissenschaft – Manfred Dworschak. Wie Pharmakonzerne gegen die E-Zigarette vorgehen. (2019)
  357. World Health Organization. WHO FRAMEWORK CONVENTION ON TOBACCO CONTROL. (2003)
  358. Conference of the Parties to the WHO Framework Convention on Tobacco Control. Electronic Nicotine Delivery Systems and Electronic Non-Nicotine Delivery Systems (ENDS/ENNDS). (2016)
  359. World Health Organization. WHO statement on ban of e-cigarettes by Government of India. (2019)
  360. Iowa Department of Justice – Office of the Attorney General. International experts in tobacco policy say WHO is blocking innovation and wasting opportunities to save millions of lives. (2020)
  361. Prof. Heino Stöver – Youtube. Online-Symposium „Zwischenbilanz E-Zigarette: Was wir wissen, müssen” am 27.05.2020. Teil 4. (2020)
  362. VAPERS.GURU – Joey Hoffmann. Vernetzung der Gegner der E-Zigarette in Deutschland. (2019)
  363. VSI -Vape Scene Investigation (Youtube). Update zur USA Verbotswelle – Nur Geld der Grund? (2019)
  364. World Health Organization. Guidelines for implementation of Article 5.3 of the WHO Framework Convention on Tobacco Control. (2008)
  365. 8th ECToH – European Conference on Tobacco or Health. Registration. (2020)
  366. Foundation for a Smoke-Free World. Funding. (2018)
  367. World Health Organization. WHO Statement on Philip Morris funded Foundation for a Smoke-Free World. (2017)
  368. Yach, D. Accelerating an end to smoking: a call to action on the eve of the FCTC’s COP9. Drugs and Alcohol Today (2020) DOI: 10.1108/DAT-02-2020-0012;
  369. Polosa, R. & Crawley, F. P. Scientific and ethical obligations to publish tobacco industry-funded research on nicotine delivery systems of reduced risk. Toxicology 390, 61-62 (2017) DOI: 10.1016/j.tox.2017.09.003;
  370. Herman, E. S. & Chomski, N. Manufacturing Consent: The Political Economy of the Mass Media, Pantheon Books, USA (1988)
  371. Printmedien in Österreich. (2018)
  372. Buchegger, R. Irren mit Hausverstand: Warum scheinbar einfache Lösungen und Alltagsregeln falsche Ratgeber sind, Goldegg Verlag, Berlin (2013)


(Zum Autor)

(Zum Online-Shop)

Literatur zu Bernd Mayer: Die E-Zigarette. Fakten und Mythen